Simulations Review Presentation

THE MERCADO_® Headgear

Outline

- **1. Executive Summary**
- 2. Updated Budget
- 3. Updated Schedule
- 4. Design overview
 - **1. Design selection**
 - 2. Materials
 - **3. Boundary Conditions**
- 5. **Design Simulations (SW)**
 - 1. Impact
 - Assumptions
 - Test
 - Results
 - 2. Thermal
 - Assumptions
 - Test
 - Results
- 6. Conclusion

Executive Summary

Design

a new wrestling head-gear

to protect

wrestlers against potential head and facial injuries, while being breathable, light, fitted, comfortable, yet durable in design.

Design Overview

Design Selection; Top of the Headgear

Entire Headgear

- Why only the top?
 - <u>Head trauma risks</u> Top-of-head impacts have a higher risk of head trauma than impacts to the front, right, or back of the head (Guskiewicz et al. 2007)
 - <u>Hyperthermia risks</u> Top-of-head and trunk have been demonstrated on thermography to have the most rapid heat loss (Gabrys et al, 1993)

Design Overview

Material Properties

Rubber:

- Elastic Modulus: 450GPa
- Poisson's Ratio: 0.15
- Mass Density: 2.8Mg/m³
- Thermal Expansion: 4.2µ/C°
- •Thermal Conductivity: 120 W/mK

Polyurethane:

- Elastic Modulus: 0.025GPa
- Poisson's Ratio: 0.39
- Mass Density: 1.2Mg/m³
- Thermal Expansion: 125µ/C°
- Thermal Conductivity: 0.02W/mK

Values taken from MIT's Mechanical Properties Table

Simulations The Force

• G-Force of 95

•The minimal allowed impact to the head before fear of concussion

• Max G-force by weight class

$$W = \int F \cdot ds = F d \cos \theta \quad \text{Equation 1}$$

$$W = mgh + \frac{1}{2}mv^2$$
 Equation 2

High School weight classes (lbs) with the average height per weight class (feet) 106, 113: 5.2
 120, 126, 132: 5.5
 138, 145, 152: 5.8
 160, 170, 182: 5.11
 195, 220, 285: 6.1
 *These weight classes are for high school (only)

Simulations The Force

Therefore using the heaviest and tallest wrestlers' values:

h = 6.1 ft

m = 285lb

Average time a wrestler lifts and drops his/her opponent is about 2 seconds.

Using t=2s and the distance to be the height of the wrestler who is, h-6.1ft gives:

$$v = \frac{6.1}{2} = 3.05 \frac{ft}{s}$$

Therefore plugging into Equation 2

$$W = 285 \times 32.2 \times 6.1 + \frac{1}{2} \times 285 \times 3.05^2 = 55,979 + 1325 = 57,304 \ ft \cdot lb_f$$

Now using Equation 1

$$F = \frac{W}{d} = \frac{57,304}{6.1} = 9394 \ lb_f$$

This seems like a big number, but when converted to Gs: 9394lbf which is 292Gs or 1298N

Sanity check: Purude research on football head trauma found football players sustain 289 Gs For comparison, the average g-force experienced by military fighter pilots is 9 Gs

Design Overview

Boundary Conditions

Force:

- F=1298N
- Applied on face of front wedge
- •Limits: Minimum 0N, Maximum 1298N

Fixed Boundaries

Fixed inner shellNo penetration of wedge

Temperature:

Ambient: 25°C ~ 298K
Head: 40°C ~ 313K
Worst Case
Limits: Minimum 25°C, Maximum 40°C

Impact Simulation

Simulations

Rubber:

- Elastic Modulus: 450GPa
- Poisson's Ratio: 0.15
- Mas Density: 1.8Mg/m³
- Thermal Expansion: 4.2µ/C°
- •Thermal Conductivity: 120 W/mK

Polyurethane:

- Elastic Modulus: 0.025GPa
- Poisson's Ratio: 0.39
- Mass Density: 1.2Mg/m³
- Thermal Expansion: 125µ/C°
- Thermal Conductivity: 0.02W/mK

The minimal allowed impact to the head before fear of concussion is 95Gs

Weight (kg)	Max Theoretical Stress (N/m ²)	Concussion Limit 95Gs to (N/m^2)	
48.1	20473.49	13393.67	
51.3	21825.51	14278.16	
54.4	23203.99	15162.65	
57.2	24364.19	15920.78	
59.9	25524.39	16678.91	
62.6	26715.02	17437.04	Without
65.8	28070.13	18321.53	Headgear
68.9	29425.24	19206.02	
72.6	30892.80	20216.86	
77.1	32823.60	21480.41	
82.6	35140.56	22996.68	
88.5	37792.48	24639.30	
99.8	42637.67	27798.18]
129.3	55235.16	36011.28]

*These weight classes are for high school (only)

Boundary Conditions:

- Inner shell is set as a fixed geometry
- No penetration allowed between wedge and inside shell

- Maximum stress applied is 55,235N/m^2
- Limit: maximum Impact stress before head trauma was calculated to be 36,011N/m² (95Gs)
- The desired result is to keep the impact experienced below this value
- The simulation is performed for four different forces (per weight class): 1298N, 1002N, 888N, 826N

- The impact force is applied to the front wedge of the headgear
- The model is then meshed to get the most accurate results

•Element Size: 0.239 in

•# of Elements: 29576

•# of Nodes: 53134

Meshing

- The Simulation is then run
- For a force of 1298 N

Simulation-Impact

• For a force of 1002N

Simulation-Impact

• For a force of 888N

With the headgear the impact stress is well below the limit for head trauma (95Gs)

Weight (kg)	Max Theoretical Stress (N/m ²)	Concussion Limit 95Gs to (N/m^2)	Experimental Stress (N/m ²)
48.1	20473.49	13393.67	5951.96
51.3	21825.51	14278.16	6348.39
54.4	23203.99	15162.65	6750.33
57.2	24364.19	15920.78	7086.19
59.9	25524.39	16678.91	7422.06
62.6	26715.02	17437.04	7768.93
65.8	28070.13	18321.53	8165.36
68.9	29425.24	19206.02	8556.29
72.6	30892.80	20216.86	8974.74
77.1	32823.60	21480.41	9525.34
82.6	35140.56	22996.68	10241.10
88.5	37792.48	24639.30	11012.00
99.8	42637.67	27798.18	12388.40
129.3	55235.16	36011.28	16077.50

*These weight classes are for high school (only)

• The experimental line is below the theoretical

- For every weight class our headgear protects against head trauma (95G) with the smallest difference being 14,500 N/m² with the largest being about 40,000 N/m²
- The materials we chose and the geometry are working and help to protect against head trauma

Thermal Simulation

Convection

Headgear and Outside Air

Headgear and Wrestler's Head

Assumptions

Temperature Gradient

Headgear and Wrestler's Head

Hair Insulation

Not considered

Rubber:

- Elastic Modulus: 450GPa
- Poisson's Ratio: 0.15
- Mass Density: 2.8Mg/m3
- Thermal Expansion: 4.2µ/C°
- •Thermal Conductivity: 120 W/mK

Polyurethane:

- Elastic Modulus: 0.025GPa
- Poisson's Ratio: 0.39
- Mass Density: 1.2Mg/m3
- Thermal Expansion: $125\mu/C^{\circ}$
- Thermal Conductivity: 0.02W/mK

•Thickness is 0.16 in or 0.0041m

Simulations 2. Thermal

Simulations

• Difference of 2K (2°C) between max and min temps

Cooling is seen between layers of headgear

Results

Material & Design selection allowed for

breathability of headgear

Conclusion

- Success
 - The results were as expected
- Impact assumptions verified:
 - Significant reduction of impact to the head
 - From 55235N/m^2 to 16078N/m^2
- Thermal assumptions verified:
 - Breathability and the convection of heat through the headgear
 - Decreased temperature
 - From 313K to 311K
- Next
 - Lab testing of the model

References

- <u>www.nmu.edu</u> wrestling pictures
- -Supporting research for force/acceleration in Gs
- <u>http://www.ehow.com/how-does_4568048_mouth-guards-prevent-</u> <u>concussions.html#ixzz2DrvBE0mb</u> How chins strap help prevent concussion
- <u>https://encrypted-</u> <u>tbn1.gstatic.com/images?q=tbn:ANd9GcQcSFq5TWRHg3D9vZFdJd1Zu4I28cE-</u> <u>eVAop2Pi34IIKMSFT7A</u> Snaps image
- <u>https://encrypted-</u> <u>tbn2.gstatic.com/images?q=tbn:ANd9GcShByrbFQ2iFuWem5nc1PMHFDWHMflf42y6Bkx</u> <u>KWqepK_VkfBbC</u> Backpack Clip Image
- <u>http://www.springerplus.com/content/pdf/2193-1801-1-2.pdf</u> Top of head concern
- <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164365/</u> Head and trunk most rapid heat loss
- <u>http://web.mit.edu/course/3/3.11/www/modulus/props.pdf</u> MIT's mechanical properties table

WARNING

WHILE THE MERCADO[®] HAS UNDERGONE EXTENSIVE RESEARCH, MATERIAL DESIGN AND IMPACT TESTING NO HELMET OR HEADGEAR CAN PREVENT SERIOUS HEAD OR NECK INJURIES, SUCH AS CONCUSSION, A PLAYER MIGHT RECEIVE WHILE PARTICIPATING IN CONTACT SPORTS.

PLAY SAFE

Simulations Review Presentation

